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Objective. Rank county health using a Bayesian factor analysis model.
Data Sources. Secondary county data from the National Center for Health Statistics
(through 2007) and Behavioral Risk Factor Surveillance System (through 2009).
Study Design. Our model builds on the existing county health rankings (CHRs) by
using data-derived weights to compute ranks from mortality and morbidity variables,
and by quantifying uncertainty based on population, spatial correlation, and missing
data. We apply our model to Wisconsin, which has comprehensive data, and Texas,
which has substantial missing information.
Data Collection Methods. The data were downloaded from www.county-
healthrankings.org.
Principal Findings. Our estimated rankings are more similar to the CHRs for
Wisconsin than Texas, as the data-derived factor weights are closer to the assigned
weights for Wisconsin. The correlations between the CHRs and our ranks are 0.89 for
Wisconsin and 0.65 for Texas. Uncertainty is especially severe for Texas given the
state’s substantial missing data.
Conclusions. The reliability of comprehensive CHRs varies from state to state. We
advise focusing on the counties that remain among the least healthy after incorporating
alternate weighting methods and accounting for uncertainty. Our results also highlight
the need for broader geographic coverage in health data.
Key Words. County, rank, health, factor analysis, Bayesian

Researchers consider a broad range of determinants when assessing popula-
tion health and identifying areas of greatest need (Kindig, Asada, and Booske
2008; Institute of Medicine, 2011). Population health assessments are often
presented to policy makers and communities as ranks, given their ubiquity
and ease of interpretation (Erwin et al. 2011; Kanarek, Tsai, and Stanley
2011). Local area rankings can motivate stakeholders in lagging communities
to design and promote local public health interventions. Such rankings can
also assist policy makers with resource allocation decisions, which can be
especially critical in times of declining local, state, and federal revenues.
Understanding one’s community’s relative health status can help local officials
assess the importance of public health initiatives relative to other priorities. At
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the state and federal levels, knowledge of the least healthy communities can
assist with funding decisions regarding local interventions and demonstration
projects (Remington and Booske 2011).

Despite the potential usefulness of local area-level health rankings, two
important difficulties arise in credibly assessing them. The first is the lack of a
single comprehensive observable measure of health. This necessitates the use
of some weighting procedure that combines available health-related variables
into a summary measure. The second is the need to account for uncertainty
arising from sources such as sampling error and missing data. Observable
attributes of health are often not available at the population level and must be
estimated using samples that can become small as the geographic area nar-
rows. The amount of uncertainty can therefore be considerable at local levels
such as the county. Moreover, data are often missing entirely for all or some
components of health in certain localities, so inherently noisy procedures for
imputing missing data are necessary to produce comprehensive rankings.

The most prominent local area-level health rankings are the county
health rankings (CHRs), produced by the University of Wisconsin Population
Health Institute (UWPHI) and begun in 2010. The CHRs address the difficul-
ties inherent in local area-level health rankings by making strong assumptions.
These rankings acknowledge the multifaceted nature of health, but fix subjec-
tively assessed deterministic weights of each component in contributing to the
overall health measure. The CHRs also do not account for uncertainty,
despite their use of sample data for some components and an imputation pro-
cess for missing data. It is therefore not possible to assess whether differences
in counties’ rankings are statistically meaningful. Ultimately, a primary pur-
pose of CHRs is to concisely convey to policy makers how population health
varies across a state. Yet rankings that do not include uncertainty instill a false
sense of confidence among local and state officials when they identify the least
and most healthy counties. Recently, Athens et al. (2013) attempted to
account for uncertainty in CHRs coming from sampling error but did not
address deterministic factor weights or missing data.
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This paper develops an alternative method for ranking county health
that addresses the issues of factor weighting and uncertainty through the use of
a Bayesian hierarchal model for factor analysis. We treat health as a latent vari-
able that depends on observable factors related to mortality and morbidity.
The model empirically derives factor weights and measures uncertainty,
which is inversely related to population size and accounts for spatial covari-
ance. Incorporating information from neighboring area improves precision,
which can be especially helpful in areas with small populations that would
otherwise have high levels of uncertainty. These features of the model follow
Hogan and Tchernis (2004), who ranked census tracts’ levels of material
deprivation in Rhode Island. We build on the Hogan and Tchernis (2004)
framework by also including an iterative procedure to impute missing data,
which is important in our context because a full array of health information is
often not available for small localities. We incorporate uncertainty from the
imputation process into the overall measure of uncertainty.

We apply our method to the CHR’s county-level data for Texas (TX)
and Wisconsin (WI). Though our model could be utilized for any state, we
choose these two because TX is the state with the most counties while WI’s
rankings served as the UWPHI’s template for the CHRs (Peppard et al. 2003,
2008). Our applications assess the importance of factor weighting and uncer-
tainty. We first implement the model with uncertainty depending only on pop-
ulation and spatial covariance. For both states, we compare our data-derived
factor weights to the CHRs’ deterministic weights and compare the rankings
obtained using our method to the CHRs. Uncertainty is evaluated by comput-
ing probability intervals (PIs) for the county ranks. We then show how the
results change if uncertainty from imputing missing data is also considered,
hypothesizing that this will increase the amount of uncertainty considerably in
TX as the state has extensive missing data.We close by discussing implications
for efforts to rank locality health.

METHODS

The Model

We incorporate a latent variable framework in which mortality and morbidity
variables are observed manifestations of the latent construct—health. The
underlying assumption of this framework is that health is not directly
observed, but rather is manifested through a number of measurable variables.
Latent variable frameworks have been widely adopted to assess quality of life
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(McAuley et al. 2006), investigate geographic patterns of disease and their
relationship with behavioral and social risk factors (Best and Hansell 2009),
and measure health inequality across population subgroups (Murray, Gaki-
dou, and Frenk 1999; van Doorslaer and Jones 2003).1 We consider the same
mortality and morbidity variables as the CHRs to facilitate comparison. In
contrast to our latent variable framework, the CHRs utilize a deterministic
framework in which the construct health outcome explicitly consists of a
weighted combination of mortality andmorbidity variables.

UWPHI determines the CHRs by calculating an overall health out-
comes score based on standardized mortality and morbidity variables and
their corresponding deterministic weights (Booske et al., 2010). UWPHI first
transforms the value of each mortality and morbidity variable into its corre-
sponding z-score based on the distribution of values within the state. Next, the
z-scores are multiplied by their corresponding deterministic weight. Finally,
UWPHI sums over the weighted z-scores to create final scores for each
county, which are then ranked.

We utilize a factor analysis model with spatially correlated factors to esti-
mate the distribution of ranks for counties within a state. A factor analysis
model given by Bartholomew and Knott (1999) explains the variability in
observed variables Yij for county i as follows:

Yi ;j ¼ lj þ kjdi þ eij ;

where lj is variable j’s average across counties, the factor di ~N(0,1) represents
latent health for county i = 1, . . ., n, kj is the factor loading for variable j = 1,
. . ., J (covariance between latent health and the observed variables), and eij ~ N
(0, rj

2) are the idiosyncratic error terms. The model assumes that the observed
variables are influenced by the underlying latent health factor di. The model is
identified by decomposing the covariance matrix of the variables within the
county into the correlation represented by the factors as the error terms, eij,
are assumed to be uncorrelated, rij = 0∀j 6¼ k.

Stacking over the variables within the county, we can rewrite the model
in vector notation as follows:

Yi ¼ lþ kdi þ ei ;

where k is a vector of stacked kj and Var(ei) = ∑ = diag{rj
2}. Finally, stacking

over the counties, we can write the model in hierarchical form:

Y jd�N ðlþ Kd; In �
XÞ
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d�N ð0; InÞ
whereΛ = In⊗ k.

The next step is to introduce the population sizes in the variance of both
the error terms and the factors. The assumption is that error terms and the fac-
tors in more populous counties have smaller variance. We define M = diag
{mi}, wheremi is the population of county i and specify the newmodel as:

Y jd�N ðlþ Kd;M �1 � XÞ
d�N ð0;M �1Þ

In this specification, the variances are inversely proportional to the
county population sizes.2 In sum, our model accounts for stochastic uncer-
tainty as well as uncertainty from sampling error and the factor loadings being
estimated rather than known with certainty.

Spatial Correlation

The last step in our model’s development introduces spatial dependence of
the factors, as spatial spillovers may affect area health measures. Adding the
spatial correlation matrix,w, the model can be rewritten as:

Y jd�N ðlþ Kd;M �1 � XÞ
d�N ð0;M �1=2WM �1=2Þ ð1Þ

We use the conditional autoregressive specification (Besag, 1974; Sun
et al., 1999), which produces a tractable relationship between the conditional
and the marginal specifications. Hogan and Tchernis (2004) show that this
specification performs well relative to several alternatives. We start from speci-
fying the conditional relationship between the factor for county i and other
counties in the neighborhood of i, Ri, and define the neighborhood as the set
of counties adjacent to i:

dji jfdj : j 2 Rig�N
X
j2Ri

bijdj ; m=ai

0
@

1
A

As discussed in Hogan and Tchernis (2004), as part of the factor
analysis model, we can only identify one parameter and thus restrict
bij = x and m/ai = 1. This specification models the conditional mean of the
distribution of the factors as a weighted average of the factors from neigh-
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boring counties, with higher values of x representing stronger spatial
dependence. This conditional specification results in the marginal distribu-
tion of d ~ N (0, (I � xR)�1), where Rij = 1 if a county j is adjacent to
county i and Rij = 0. Thus, Ψ = (I � xR)�1 is a full matrix inducing the
correlation between variables between counties. This specification induces
a restriction on the support of x to be between the reciprocals of the
smallest and the largest eigenvalues of R.

Estimation

The model is estimated using Markov ChainMonte Carlo methods (Chib and
Greenberg 1996). We use Gibbs Sampler (Gelfand and Smith 1990) with one
Metropolis–Hastings (Chib and Greenberg 1995) step to obtain draws from x.
At each iteration of the sampler, we rank the posterior means of factors, result-
ing in one sample from the posterior distribution of ranks. The exact condi-
tional distributions are summarized in Hogan and Tchernis (2004).

Missing Data

In our application, some of the values of the manifest variables Yij are unob-
served and thus need to be imputed. The CHRs replace missing covariates
with their corresponding state-level means, which is potentially problematic
for two reasons. First, it ignores the uncertainty inherent in the imputation pro-
cess. Second, imputing missing data with state averages may lead to biased
rankings if counties with missing data are systematically more or less healthy
than average. For example, the rank of a county missing data on all but one
factor will approach the state average.

We consider multiple approaches to missing data. Our baseline model
simply replaces the missing factors(s) with ordinary least squares (OLS) pre-
dictions based on the other factors. This solves the problem of counties with
missing data automatically being drawn toward the middle, but it does not
address uncertainty. We also replicated CHR’s state averages approach, and
the results were very similar to those obtained using OLS imputation. This
suggests the biggest problem with the state averages imputation is its neglect
of uncertainty, not its introduction of systematic bias. Our second imputation
approach is therefore to sample from the distribution of missing values condi-
tional on the parameters of the model using (1) at each iteration of the sam-
pler (Rubin 1976; Little and Rubin 1987; Hogan and Tchernis 2004). This
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incorporates the uncertainty of predicting missing values as part of the estima-
tion, similarly to multiple imputations procedure.

Data

We implement the model using UWPHI data applied to the year 2011 county
health outcome rankings in TX and WI. Mortality and morbidity data for the
year 2011 were downloaded on June 1, 2012 (www.countyhealthrankings.org).
The mortality variable is the years of potential life lost before age 75 years
(“premature death”), estimated by UWPHI using 2005–2007 life table data
from the National Center for Health Statistics (NCHS). The morbidity vari-
ables are (1) the percent of adults reporting fair or poor health (“self-reported
health”); (2) the mean number of physically unhealthy days per month for
adults (“physical unhealthy days”); (3) the mean number of mentally
unhealthy days per month for adults (“mental unhealthy days”); and (4) the
percent of live births with birthweight <2,500 g (“low birthweight”). The first
three morbidity variables were estimated by UWPHI using 2003–2009 data
from the Behavioral Risk Factor Surveillance System (BRFSS) and the fourth
using 2001–2007 birth certificate data from NCHS. The mortality variable is
therefore based on the entire population, whereas the first three morbidity
variables are from a representative survey and low birthweight reflects the
universe of births.

UWPHI did not rank 31 of 254 counties in TX because they were miss-
ing at least four of the five variables. Of the remaining 223, 116 counties had
missing data on at least one variable, and UWPHI applied their aforemen-
tioned imputation procedure to these counties. UWPHI ranked all 72 counties
in WI, only two of which had missing data on any variables. To facilitate com-
parability, we focus only on the counties ranked by UWPHI. Our sample,
therefore, consists of 223 TX counties and 72WI counties.

RESULTS

Factor Weights

We estimate the model using data for TX andWI separately. The means, stan-
dard errors, and 95 percent PIs of the posterior distributions of all of the mod-
el’s parameters are available in Appendix Table A1. We focus our discussion
on the results of most interest, beginning with the estimated factor weights.
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Table 1 compares the deterministic CHR weights to our normalized
square correlations for the mortality and morbidity variables. Normalized
square correlation represents the proportion of the variance in the variable
that is explained by the factors and, therefore, is comparable to the CHR
weights. Our square correlations differ between TX and WI and also differ
from the CHR weights. For example, we estimate the squared correlation of
the mean number of physically unhealthy days per month to be 0.41 for TX
(95 percent CI, 0.34–0.48) and 0.21 for WI (95 percent CI, 0.11–0.31),
whereas the CHRs set the weight of this variable to 0.10 for all states. The fact
that the difference between our squared correlations and the CHR weights is
greater for TX than WI suggests that our rankings will be less similar to the
CHRs for TX.

Mean Rankings

For each county, we compute the posterior distribution of its health outcomes
rank, including its mean and 95 percent PI. Tables showing our full county
rankings for TX and WI are available upon request. Figure 1 illustrates the
differences between our rankings and the CHRs, and the extent of uncertainty
in the rankings. Specifically, we plot the middle 95 percent of the posterior dis-
tribution of ranks (horizontal line) and the mean of the posterior distribution
(solid circle) relative to each county’s CHR rank. These initial estimations use
the OLS imputations for missing data.

We begin by discussing the differences between our (mean) rankings
and the CHRs. Greater distances between solid circles and the 45-degree line
indicate larger differences between our rankings and the CHRs. A solid circle
to the right of the 45-degree line indicates that our method ranks the county

Table 1: County Health Ranking (CHR) Deterministic Weights and Nor-
malized Square Correlations

Health Outcomes
UWPHI Texas Wisconsin

x q2 (95% CI) q2 (95% CI)

Premature deaths 0.50 0.14 (0.09, 0.19) 0.27 (0.17, 0.38)
Self-reported health status 0.10 0.24 (0.20, 0.29) 0.21 (0.12, 0.30)
Physically unhealthy days 0.10 0.41 (0.34, 0.48) 0.21 (0.11, 0.31)
Mentally unhealthy days 0.10 0.15 (0.10, 0.20) 0.17 (0.08, 0.25)
Low birthweight births 0.20 0.06 (0.02, 0.10) 0.15 (0.05, 0.24)

UWPHI, University of Wisconsin Population Health Institute; x, weight; q2, squared correlation;
CI, credible interval.
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worse than the CHRs, and vice versa. Comparing the panels for TX and WI,
there are more disagreements in TX than in WI; the intervals in the WI panel
are much closer to the 45-degree line. The correlations between the CHR
ranks and our ranks are 0.65 for TX (95 percent CI, 0.60–0.71) and 0.89 for
WI (95 percent CI, 0.81–0.94).

Uncertainty

We next consider uncertainty in the rankings. The horizontal lines from
Figure 1 suggest considerable uncertainty in both states. The 95 percent
PIs range from 0 to 69 ranks wide in TX, with a mean width of 14.5 ranks
and median width of 11 ranks. In WI, the 95 percent PIs range from 1 to
38 ranks wide, while the mean and median widths are 12 and 12 ranks,
respectively.

We can use the measures of uncertainty to ask how far apart the ranks of
two counties should be to give a researcher reasonable confidence that they
are different (e.g., 90 or 95 percent confident). To answer this question, we cal-
culate the percentage overlap in the posterior distribution of ranks between
two counties that are k units apart in their mean rank. Consider Harris
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Figure 1: County Health Ranking (CHR) Ranks, Mean Posterior Ranks,
and 95 percent Probability Intervals

Notes: The left (right) panel shows the posterior rank and CHR rank for each county in Texas (Wis-
consin). The 95 percent probability interval of the posterior distribution is denoted by a horizontal
line and mean posterior rank is denoted by a solid circle. The gray horizontal and vertical lines
represent the 80th percentile of ranks and the 45-degree line represents equality between the
CHRs and posterior ranks.
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County, TX, with mean rank equal to 66. The mean rank of Blanco County,
TX, equals k = 5 ranks higher at 71; 2.2 percent of the posterior distribution of
Harris County overlaps with the posterior distribution of Blanco County. In
TX, there are 216 unique pairs of counties with mean rank k = 5 units apart
and we calculate the percentage overlap for each pair. The median percentage
overlap among the 216 pairs of counties is 12.8 percent.

As the difference between mean ranks, k, increases, the median percent-
age overlap decreases. For example, as k increases from 1 to 5 to 10, the med-
ian overlap in the posterior distributions in TX equals 40.8, 12.8, and 1.3
percent, respectively. Fifty percent of county pairs have 1 percent or less over-
lap when k exceeds 11, as do 75 percent of pairs when k exceeds 17 and 95 per-
cent of pairs when k exceeds 30. In WI, as k increases from 1 to 5 to 10, the
median overlap in the posterior distributions equals 41.7, 13.5, and 0.5 per-
cent, respectively. Ten percent of county pairs have 1 percent or less overlap
when k exceeds 11, as do 75 percent of pairs when k exceeds 16 and 95 percent
of pairs when k exceeds 23. Thus, to be reasonably confident, say 90 percent,
that two counties are different with respect to their health outcomes ranking,
the distance between the mean of their health rank distribution should be
approximately 25 counties apart in TX and 21 counties apart inWI.

Least Healthy Counties

A key purpose of the CHRs is identifying the least healthy counties (Kindig
and Stoddart 2003). We therefore next examine how closely the least healthy
counties identified by our rankings correlate to those from the CHRs. The ver-
tical and horizontal lines in Figure 1 represent the 80th percentile (178th of
223 ranked counties in TX and 62nd of 72 in WI) separating the least healthy
quintile of counties. According to our model, the least healthy counties will be
those in which the mean of their rank distribution lies to the right of the verti-
cal gray line. The least healthy counties according to the CHRs will be those
with ranks above the horizontal gray line. Again, the differences are much
more pronounced for TX than WI. In TX, 26 counties are classified as least
healthy by both models, 19 are classified as least healthy by our model and not
the CHRs, and 19 are classified as least healthy by the CHRs and not our
model. In WI, 13 counties are classified as least healthy by both models, 3 are
classified as least healthy by our model and not the CHRs, and 2 are classified
as least healthy by the CHRs and not our model. The correlation between the
least healthy counties identified by our rankings and those from the CHRs
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equals�0.20 for TX (95 percent CI,�0.26 to�0.07) and 0.32 for WI (95 per-
cent CI, 0.16–0.54).

It is also useful to examine the degree of uncertainty in our identification
of the least healthy counties, which we do by presenting the probability of
each county being in the least healthy quintile in state maps in Figure 2. In
TX, we observe a large concentration of unhealthy counties in East Texas.
The probability of being in the least healthy quintile is 1.00 for Austin County,
0.63 for Colorado County, and 0.59 for Polk County. In other words, the
entire posterior distribution of rankings for Austin County and 59 percent of
the posterior distribution of rankings for Polk County lie to the right of 80th
percentile. InWI, the probability is high for several of the northernmost coun-
ties (e.g., 0.96 for Douglas County) and several counties in theMilwaukee area
(e.g., 1.00 forMilwaukee County and 0.54 for Kenosha County).

Missing Data

All our rankings thus far use OLS imputations for missing data. This approach
does not account for uncertainty about the imputed values, perhaps leading to
PIs that are too narrow and estimates of minimum ranking differences neces-
sary for statistical significance that are too small. This is likely especially prob-

Figure 2: Probability of Being in Least HealthyQuintile, Texas andWisconsin

Notes: The left (right) panel shows the probability of being in the least healthy quintile under our
model for Texas (Wisconsin). Unranked counties dotted.
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lematic in TX, which has muchmore missing data thanWI. Figure 3 therefore
explores the sensitivity of our results to the use of the iterative imputation pro-
cedure. The left column (“Na€ıve Imputation”) reproduces the results using the
OLS imputations from Figure 2, while the middle column (“Posterior Imputa-
tion”) uses the iterative procedure. Recall that our main sample includes all
counties with valid data for at least one of the five factors. Another useful com-
parison is therefore to assess how the results change using a more restrictive
set of counties. Thus, the right column (“Restricted Imputation”) drops coun-
ties with more than one missing factor. This reduces the number of counties
from 223 to 152 in TX, but it does not affect the number of counties inWI.

The bottom half of Figure 3 shows that incorporating uncertainty from
imputing missing data has essentially no effect on the results for WI. This is
because only two of WI’s 72 counties have any missing data, and those two
counties are missing only one factor. As no counties are missing more than
one factor, the second and third figures are exactly the same.
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Figure 3: County Health Ranking (CHR) Ranks, Mean Posterior Ranks,
and 95 percent Probability Intervals with Different Approaches to Missing
Data

Notes: The top (bottom) panel shows the posterior and CHR ranks for each county in Texas (Wis-
consin). The 95 percent probability interval of the posterior distribution is denoted by a horizontal
line and mean posterior rank by a solid circle. The gray horizontal and vertical lines represent the
80th percentile of ranks and the 45-degree line represents equality between the CHR and poste-
rior ranks. The restricted imputation excludes 71 TX counties with more than one missing vari-
able.
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The top half of Figure 3 shows that the results are much different for
TX. Keeping all counties with at least one nonmissing factor in the sample
(“Posterior Imputation”), we see that incorporating uncertainty from imputing
missing data drastically increases the overall amount of uncertainty. The 95
percent PIs for the 116 counties with at least one missing factor generally
expand to include almost the entire range of possible ranks. Even the PIs for
counties with no missing data widen considerably in most cases because of the
shared component in the uncertainty measure. When we drop the counties
with two or more missing factors (“Restricted Imputation”), the level of uncer-
tainty drops relative to the previous “Posterior Imputation” but remains con-
siderably greater than “Na€ıve Imputation.”Of the 152 remaining counties, 71
have 95 percent PIs that reach into the “least healthy quintile” range and 47 of
these extend into the “least healthy decile” range.

The TX results illustrate the broader point that when the amount of
missing data is extensive, it may be difficult to obtain comprehensive county
rankings after accounting for all sources of uncertainty. However, clear con-
clusions can still be reached for some counties. For instance, even in the full-
sample TX graph with the iterative imputation process, the 95 percent PIs for
19 counties lie entirely to the right of the 80th percentile line. These 19 coun-
ties can therefore confidently be identified as among the least healthy. Fig-
ure 4 maps these counties, which are mostly in eastern TX. The figure further
shows that 12 of these counties are also among the least healthy according to
the CHRs. These 12 counties’ classification as least healthy therefore not only
holds up after accounting fully for uncertainty but is also robust to the use of
quite different factor weights.

DISCUSSION

This paper implements a Bayesian hierarchal model for factor analysis to rank
the health of localities, where health is a latent variable that depends on
observable factors related to mortality and morbidity. Our model builds on
the CHRs by using a data-driven process to determine factor weights and
including a measure of uncertainty that incorporates population, spatial
covariance, and missing data. Applying our method to county-level data from
TX and WI reveals the importance of these innovations. We show that our
data-derived factor weights differ substantially from the deterministic CHR
weights in TX but less so in WI. Consequently, our rankings are much more
similar to the CHRs for WI. We also document considerable uncertainty in
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both states that rises sharply in TX after accounting for uncertainty from
imputing the state’s substantial missing data. It becomes impossible to reach
clear conclusions for most counties in TX, although some of the least healthy
counties can still be identified.

Our framework allows numerous variations in future research on
health rankings. Our model could be estimated in other states using the
same five mortality and morbidity variables. It would also be straightfor-
ward to produce alternative rankings using additional health-related vari-
ables. Indeed, numerous other measures of health outcomes are routinely
measured at the population level (Kindig 2007). Our latent variable frame-
work could incorporate these additional manifestations of health and empir-
ically derive their relationship on health outcomes without requiring
subjective expert opinion on variable weights. Moreover, our method could
easily be used to produce rankings at geographic levels besides the county,
such as the state or metropolitan statistical area. The existing state-level
America’s Health Rankings (United Health Foundation, 2010) suffer from

Figure 4: Texas (TX) Counties That Are Definitively among the Least
Healthy in Posterior Imputation

Notes: The PIs of counties shaded black or dark gray lie entirely to the right of the 80th percentile
using our posterior imputation. The counties shaded black are also classified as among the least
healthy 20 percent by the county health rankings (CHRs), whereas those shaded dark gray are
not. The counties shaded light gray are classified as among the least healthy 20 percent by the
CHRs but cannot be definitively classified as such by our model.
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the same limitations as the CHRs, although sampling error and missing
data are probably less problematic at larger geographic levels. Our ranking
methodology could even be extended to international comparisons of
health system performance or human development (United Nations Devel-
opment Programme, 2011).

Our approach also allows different users to vary the necessary level of
confidence. Academic researchers generally have objectives that require a
high degree of confidence, such as assessing how population health varies geo-
graphically or estimating the impact of an intervention. Alternatively, state-
level policy makers may need to make a timely resource allocation decision
with the best available information, in which case the necessary level of confi-
dence may be lower. To illustrate, in TX we conclude that mean rank of coun-
ties should be at least 30 ranks apart to provide 95 percent confidence of a ≤10
percent difference in health rankings, but only 11 ranks apart to provide 80
percent confidence of a ≤10 percent difference.

Additionally, our method allows for flexibility about the geographic
level at which the factor weights vary. Our applications take the perspective of
state-level policy makers, so we conduct separate estimations for WI and TX
and allow the weights to vary between states. If the objective were instead to
compute one set of CHRs for the entire United States, then a single estimation
with equal factor weights across all states would be appropriate.

We acknowledge several limitations in this study. First, only using data
from two states limits the generalizability of our conclusions. Second, we
rank only counties with at least one morbidity or mortality variable mea-
sured. Counties without any measured variables, which are often the small-
est, may also be among the most disadvantaged and least healthy. Next,
while rankings are useful to compare the health of populations, they do not
convey absolute differences. A county’s health ranking may improve even
though its population became less healthy if the health of other counties
declines faster over time. Additionally, our research does not address why
some counties are healthier than others. Additional research is needed to
understand how medical, social, and physical determinants interact to pro-
duce health and perpetuate disparities (Stoddart 1995; Kawachi, Subrama-
nian, and Almeida-Filho 2002). Also, ranking health at the county level
masks heterogeneity within counties along dimensions such as age, geogra-
phy, income, national origin, and primary language. These distinctions may
lead to relatively healthy and sick subpopulations, in which case an
observed indicator based largely on one subpopulation (e.g., younger adults
largely influence birthweight) may not load on a single factor driven largely
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by the other subpopulation (e.g., older adults). Similarly, we model health
as a single latent factor, whereas health could also be modeled as consisting
of multiple domains (e.g., physical and mental health). Murray et al. (2013),
for example, show how to use copula latent factor models, which perform
well particularly with non-Gaussian distributed data. Finally, while our
emphasis is on the accuracy of county health measurement, future research
should investigate other criteria such as efficiency, reliability, and replicabil-
ity. One recent example is Arndt et al. (2013), who examine variability in
reliability of indexes based on different variables used in CHR. They show
that health measures vary in their ability to provide consistent ranks across
states, with population-based measures generally performing better than
survey-based measures.

In conclusion, policy makers will find CHRs most useful when they can
draw meaningful and valid conclusions about the least healthy counties that
require additional attention and the healthiest counties that can serve as mod-
els for public health initiatives. Yet current CHRs suffer from limitations that
make local and state officials vulnerable to faulty conclusions. By allowing for
uncertainty, our results reveal instances where apparent geographic differ-
ences are misleading. States with considerable missing data might be better
served by focusing on the counties that can be precisely identified as being
among the least healthy, rather than attempting to utilize rankings of all
counties. Alternatively, our results could be interpreted as calling for broader
geographic coverage in health data.
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NOTES

1. While there is therefore precedent for our approach of modeling health as a single
latent construct, we acknowledge that health could also be modeled as having multi-
ple distinct domains.

2. Ideally, we would use sample sizes rather than populations, but this would compli-
cate the model considerably because the factors come from different datasets with
different numbers of observations per county. Using population instead of sample
sizes should not meaningfully impact the results, as counties with larger populations
should have larger sample sizes.
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